

1) Fill in the following information:

Center of Dilation:

Image:

Preimage: _____

2) Use a ruler to measure each of the line segments to the nearest centimeter:

$$\overline{RS} =$$

$$\overline{R'S'} =$$

$$\overline{ST} =$$

$$\overline{S'T'} =$$

$$\overline{RT} =$$

$$\overline{R'T'} =$$

3) Now use your answers to find the following RATIOS: (SIMPLIFY EACH FRACTION!)

$$\frac{\overline{R'S'}}{\overline{RS}} =$$

$$\frac{\overline{S'T'}}{\overline{ST}} =$$

$$\frac{\overline{R'T'}}{\overline{RT}} =$$

4) Use a protractor to measure each of the angles:

$$m \angle RST =$$

$$m \angle R'S'T' =$$

$$m \angle STR =$$

$$m \angle S'T'R' =$$

$$m \angle TRS =$$

$$m \angle T'R'S' =$$

5) Based on the information you found in PART 3 corresponding sides?	3, what can you conclude about the ratios of
6) Based on the information you found in PART corresponding angles?	4, what can you conclude about the measures of
Let's see if we can draw some conclusions:	
Notice that all the ratios in part 3 were found by us	ing the $\frac{IMAGE}{PREIMAGE}$
7) You found that the ratios of corresponding side	es were
8) When two fractions are equivalent, we say tha	t they are
9) You have now discovered that the ratios of corresponding sides are	
and the measures of corresponding angles are	
10) We can now conclude that $\triangle RST$ and $\triangle R'S'T'$ are	
11) Each line segment in the image is times its corresponding line segment in the preimage.	
12) Recall that the ratio used to enlarge or reduce similar figures is called the	
13) The dilation of $\triangle RST$ to $\triangle R'S'T'$ uses a	of