\qquad
\qquad
\qquad

1) Fill in the following information:

Center of Dilation: \qquad Image: \qquad
2) Use a ruler to measure each of the line segments to the nearest centimeter:
$\overline{R S}=$
$\overline{R^{\prime} S^{\prime}}=$
$\overline{S T}=$
$\overline{S^{\prime} T^{\prime}}=$
$\overline{R T}=$
$\overline{R^{\prime} T^{\prime}}=$
3) Now use your answers to find the following RATIOS: (SIMPLIFY EACH FRACTION!)
$\frac{\overline{R^{\prime} S^{\prime}}}{\overline{R S}}=$
$\frac{\overline{S^{\prime} T^{\prime}}}{\overline{S T}}=$
$\frac{\overline{R^{\prime} T^{\prime}}}{\overline{R T}}=$

Preimage: \qquad
4) Use a protractor to measure each of the angles:
$m \angle R S T=$
$m \angle R^{\prime} S^{\prime} T^{\prime}=$
$m \angle S T R=$
$m \angle S^{\prime} T^{\prime} R^{\prime}=$
$m \angle T R S=$
$m \angle T^{\prime} R^{\prime} S^{\prime}=$
5) Based on the information you found in PART 3, what can you conclude about the ratios of corresponding sides?
6) Based on the information you found in PART 4, what can you conclude about the measures of corresponding angles?

Let's see if we can draw some conclusions:

Notice that all the ratios in part 3 were found by using the

IMAGE

PREIMAGE
7) You found that the ratios of corresponding sides were \qquad .
8) When two fractions are equivalent, we say that they are \qquad .
9) You have now discovered that the ratios of corresponding sides are \qquad and the measures of corresponding angles are \qquad .
10) We can now conclude that $\Delta R S T$ and $\Delta R^{\prime} S^{\prime} T^{\prime}$ are \qquad .
11) Each line segment in the image is \qquad times its corresponding line segment in the preimage.
12) Recall that the ratio used to enlarge or reduce similar figures is called the \qquad .
13) The dilation of $\Delta R S T$ to $\Delta R^{\prime} S^{\prime} T^{\prime}$ uses a \qquad of \qquad .

